These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mass transfer affects reactor performance, microbial morphology, and community succession in the methane-dependent denitrification and anaerobic ammonium oxidation co-culture.
    Author: Fu L, Zhang F, Bai YN, Lu YZ, Ding J, Zhou D, Liu Y, Zeng RJ.
    Journal: Sci Total Environ; 2019 Feb 15; 651(Pt 1):291-297. PubMed ID: 30236845.
    Abstract:
    Denitrifying anaerobic methane oxidation (DAMO) combining anaerobic ammonium oxidation (Anammox) process is a novel nitrogen removal technology. However, the roles of methane transfer (gas phase) and nitrogen transfer (liquid phase) in the heterogeneous process remain unclear. In this study, granular DAMO and Anammox co-cultures were inoculated from a hollow-fiber membrane bioreactor into a sequence batch reactor (SBR). Since the methane transfer became limited in SBR, the nitrate removal rate first decreased and then increased to 10 mg/(L∙day), while the ammonium removal rate did not recover and was around 2 mg/(L∙day). The activity of DAMO archaea and Anammox bacteria decreased noticeably. Furthermore, granular aggregates dispersed into small granules and ultimately became flocs with poor settleability in SBR. The content of extracellular polymeric substances decreased, especially that of proteins and humics. DAMO archaea decreased by 94.6% and Anammox bacteria decreased by 72%. In summary, the limitation of methane transfer affected DAMO and Anammox processes more notably than nitrogen transfer, resulting in lower nitrogen removal, granule disruption, and microbial community succession.
    [Abstract] [Full Text] [Related] [New Search]