These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effective degradation of curdlan powder by a novel endo-β-1→3-glucanase.
    Author: Li K, Chen W, Wang W, Tan H, Li S, Yin H.
    Journal: Carbohydr Polym; 2018 Dec 01; 201():122-130. PubMed ID: 30241803.
    Abstract:
    Curdlan is a water-insoluble microbial exo-polysaccharide that is hardly degraded. The gene CcGluE encoding an endo-β-1→3-glucanase consisting of 412 amino acids (44 kDa) from Cellulosimicrobium cellulans E4-5 was cloned and expressed in Escherichia coli. The recombinant CcGluE hydrolysed curdlan powder effectively. CcGluE shows high endo-β-1→3 glucanase activity and low β-1,4 and β-1,6 glucanase activities with broad substrate specificity for glucan, including curdlan, laminarin and β-1→3/1→6-glucan, and the highest catalytic activity for curdlan. Moreover, the hydrolytic products of curdlan were glucan oligosaccharides with degrees of polymerisation of 2-13, and the main products were glucobiose and glucotriose. Degradation mode analysis indicated that CcGluE is more likely to hydrolyse glucopentaose and revealed that CcGluE was an endo-glucanase. Furthermore, upon combination with a homogenising pre-treatment method with curdlan, the degradation efficiency of CcGluE for curdlan powder was greatly improved 7.1-fold, which laid a good foundation for the utilisation of curdlan.
    [Abstract] [Full Text] [Related] [New Search]