These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Potential P-glycoprotein-mediated herb-drug interaction of phyllanthin at the intestinal absorptive barrier.
    Author: Dunkoksung W, Vardhanabhuti N, Jianmongkol S.
    Journal: J Pharm Pharmacol; 2019 Feb; 71(2):213-219. PubMed ID: 30251430.
    Abstract:
    OBJECTIVES: This study investigated the absorptive potential of phyllanthin across the polarized Caco-2 monolayers and the potential role of phyllanthin in P-glycoprotein (P-gp)-mediated drug interaction. METHODS: The absorptive potential of phyllanthin was predicted from its apparent permeability (Papp ) across the Caco-2 monolayers under the pH gradient condition (pH 6.5AP -7.4BL ) at 37°C. Integrity of paracellular transport was assessed by monitoring transepithelial electrical resistance (TEER) and lucifer yellow (LY) leakage. P-gp-mediated interaction was evaluated by transport studies of phyllanthin and rhodamine-123. KEY FINDINGS: The absorptive Papp of phyllanthin (34.90 ± 1.18 × 10-6 cm/s) was in the same rank order as the high permeable theophylline and antipyrine. Phyllanthin transport in the absorptive and secretive directions was comparable (the efflux ratio (ER) of 1.19 ± 0.01). Phyllanthin caused no changes in TEER nor LY leakage in the monolayers. However, phyllanthin increased rhodamine-123 ER in a concentration-dependent manner, suggesting its inhibition on P-gp function. In addition, phyllanthin aqueous solubility was <5 μg/ml at 37°C. CONCLUSIONS: Phyllanthin is a highly permeable compound that could passively diffuse through the absorptive barrier via transcellular pathway with little hindrance from P-gp. Phyllanthin could interfere with transport of P-gp drug substrates, when concomitantly administered. In addition, aqueous solubility could be a limiting factor in phyllanthin absorption.
    [Abstract] [Full Text] [Related] [New Search]