These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of receptors for vasoactive intestinal peptide solubilized from the lung. Author: Paul S, Said SI. Journal: J Biol Chem; 1987 Jan 05; 262(1):158-62. PubMed ID: 3025200. Abstract: The zwitterionic detergent CHAPS was used to solubilize functional receptors for vasoactive intestinal peptide (VIP) from guinea pig lung. The solubilized receptors were resolved by high performance gel filtration in 3 mM CHAPS into two active fractions with apparent Stokes radii of 5.9 +/- 0.1 and 2.3 +/- 0.1 nm. The binding of 125I-VIP to the two receptor fractions was time-dependent, reversible, and saturable. Trypsin destroyed the binding activity of the receptor fractions, indicating their proteinic nature. Unlabeled VIP competitively displaced the binding of 125I-VIP to the 5.9-nm fraction (IC50 = 240 pM) and the 2.3-nm fraction (IC50 = 1.2 microM). Scatchard analysis indicated a single class of binding sites in each receptor fraction, with Kd values 300 pM and 0.97 microM for the 5.9- and 2.3-nm Stokes radii fractions, respectively. When the high affinity, 5.9-nm Stokes radius fraction was rechromatographed in 9 nM CHAPS, 46% of the binding activity eluted in the low affinity, 2.3-nm Stokes radius fraction, indicating that the latter is a product of dissociation of the high affinity receptor complex. GTP inhibited the binding of 125I-VIP to the high affinity complex but not the low affinity species. Scatchard plots of VIP binding by the high affinity receptors treated with GTP suggested the presence of two distinct binding sites (Kd 4.4 and 153 nM), compared to a single binding site (Kd = 0.3 nM) obtained in untreated receptors. The nonhydrolyzable GTP analog, guanyl-5'-yl-imidodiphosphate, inhibited VIP binding by the high affinity receptor fraction with potency nearly equivalent to that of GTP. These observations suggest that GTP-binding regulatory proteins are functionally coupled to the VIP-binding subunit in the high affinity receptor complex. The peptide specificity characteristics of the two receptor fractions were different. Peptide histidine isoleucine and growth hormone releasing factor, peptides homologous to VIP, were 87.5- and 22.9-fold less potent than VIP in displacing 125I-VIP binding by the high affinity receptor complex, respectively. On the other hand, growth hormone-releasing factor was more potent (22.7-fold) and peptide histidine isoleucine was less potent (31.3-fold) than VIP in displacing the binding by the low affinity species.[Abstract] [Full Text] [Related] [New Search]