These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-synthetic modification of zirconium metal-organic frameworks by catalyst-free aza-Michael additions. Author: Amer Hamzah H, Crickmore TS, Rixson D, Burrows AD. Journal: Dalton Trans; 2018 Oct 23; 47(41):14491-14496. PubMed ID: 30256351. Abstract: The reactions of the zirconium MOF [Zr6O4(OH)4(bdc-NH2)6] (UiO-66-NH2, bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) with the Michael acceptors acrylonitrile (CH2[double bond, length as m-dash]CHCN), acrylic acid (CH2[double bond, length as m-dash]CHCO2H), methyl acrylate (CH2[double bond, length as m-dash]CHCO2Me) and methyl vinyl ketone (CH2[double bond, length as m-dash]CHC(O)Me) led to post-synthetic modification of the MOF through C-N bond formation without loss of crystallinity. The reactions with acrylonitrile and acrylic acid go to completion, yielding [Zr6O4(OH)4(bdc-NHCH2CH2CN)6] (UiO-66-AN, 1) and [Zr6O4(OH)4(bdc-NHCH2CH2CO2H)6] (UiO-66-AA, 2) respectively, whereas those with methyl acrylate and methyl vinyl ketone are incomplete, yielding [Zr6O4(OH)4(bdc-NH2)0.66(bdc-NHCH2CH2CO2Me)5.34] (UiO-66-MA, 3) and [Zr6O4(OH)4(bdc-NH2)2.76(bdc-NHCH2CH2C(O)Me)3.24] (UiO-66-MVK, 4), respectively. The acrylonitrile-modified MOF UiO-66-AN undergoes further reaction with sodium azide in the presence of zinc(ii) chloride in n-butanol to form the tetrazolate-modified MOF [Zr6O4(OH)4(bdc-NHCH2CH2CN)4.74(bdc-NHCH2CH2CN4H)1.26] (UiO-66-TZ, 5).[Abstract] [Full Text] [Related] [New Search]