These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improving Correlations Between Drug Solubilization and In Vitro Lipolysis by Monitoring the Phase Partitioning of Lipolytic Species for Lipid-Based Formulations. Author: Dening TJ, Joyce P, Prestidge CA. Journal: J Pharm Sci; 2019 Jan; 108(1):295-304. PubMed ID: 30257194. Abstract: Solution proton nuclear magnetic resonance analysis was used in conjunction with in vitro lipolysis to elucidate the time-dependent speciation and release of lipolytic products during the digestion of lipid-loaded inorganic particles, allowing correlations to be made between the phase partitioning of lipolytic products and an encapsulated poorly soluble drug. Silicon dioxide, montmorillonite, and laponite were used to encapsulate medium chain triglycerides into solid-state lipid-based formulations (LBFs), and coumarin 102 was selected as a model poorly soluble compound. The specific inorganic carrier material used to encapsulate medium chain triglycerides significantly impacted the release and partitioning of the solubilizing lipolytic products, that is, diglycerides, monoglycerides, and fatty acids. A strong linear correlation was obtained between drug solubilization and fatty acid release to the aqueous phase (R2 = 0.996), indicating fatty acids to be the most important lipid species for enabling solubilization and potential drug absorption in vivo. This method was developed to improve upon the use of pH-stat titration for characterizing LBF digestion during in vitro lipolysis studies and is demonstrated herein to provide useful insights into how the selected inorganic carrier material impacts LBF performance when solid-state LBF powders are fabricated via adsorption.[Abstract] [Full Text] [Related] [New Search]