These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and evaluation of thiazolidine-2,4-dione/benzazole derivatives as inhibitors of protein tyrosine phosphatase 1B (PTP-1B): Antihyperglycemic activity with molecular docking study. Author: Hidalgo-Figueroa S, Estrada-Soto S, Ramírez-Espinosa JJ, Paoli P, Lori G, León-Rivera I, Navarrete-Vázquez G. Journal: Biomed Pharmacother; 2018 Nov; 107():1302-1310. PubMed ID: 30257345. Abstract: This work presents the synthesis of two hybrid compounds (1 and 2) with thiazolidine-2,4-dione structure as a central scaffold which were further screened in combo (in vitro as PTP-1B inhibitors, in vivo antihyperglycemic activity, in silico toxicological profile and molecular docking). Compound 1 was tested in the enzymatic assay showing an IC50 = 9.6 ± 0.5 μM and compound 2 showed about a 50% of inhibition of PTP-1B at 20 μM. Therefore, compound 1 was chosen to test its antihyperglycemic effect in a rat model for non-insulin-dependent diabetes mellitus (NIDDM), which was determined at 50 mg/kg in a single dose. The results indicated that compound showed a significant decrease of plasma glucose levels that reached 34%, after a 7 h post-administration. Molecular docking was employed to study the inhibitory properties of thiazolidine-2,4-dione derivatives against Protein Tyrosine Phosphatase 1B (PDB ID: 1c83). Concerning to the two binding sites in this enzyme (sites A and B), compound 1 has shown the best docking score, which indicates the highest affinity. Finally, compounds 1 and 2 have demonstrated an in silico satisfactory pharmacokinetic profile. This shows that it could be a very good candidate or leader for new series of compounds with this central scaffold.[Abstract] [Full Text] [Related] [New Search]