These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Astaxanthin ameliorates experimental diabetes-induced renal oxidative stress and fibronectin by upregulating connexin43 in glomerular mesangial cells and diabetic mice. Author: Chen Q, Tao J, Li G, Zheng D, Tan Y, Li R, Tian L, Li Z, Cheng H, Xie X. Journal: Eur J Pharmacol; 2018 Dec 05; 840():33-43. PubMed ID: 30268666. Abstract: Oxidative stress is the major cause of renal fibrosis in the progression of DN. Connexin43 (Cx43) exerts an anti-fibrosis effect on diabetic kidneys. The current study aimed to investigate whether astaxanthin (AST) could ameliorate the pathological progression of DN by upregulating Cx43 and activating the Nrf2/ARE signaling, which is a pivotal anti-oxidative stress system, to strengthen the cellular anti-oxidative capacity and diminish fibronectin (FN) accumulation in HG-induced glomerular mesangial cells (GMCs). Our hypothesis was verified in GMCs and the kidneys from db/db mice by western blot, immunofluorescence, immunohistochemistry, immunoprecipitation, dual luciferase reporter assay and reactive oxygen related detection kits. Results showed that AST simultaneously upregulated the Cx43 protein level and promoted the Nrf2/ARE signaling activity in the kidney of db/db mice and HG-treated GMCs. However, Cx43 depletion abrogated the Nrf2/ARE signaling activation induced by AST. AST reduced the interaction between c-Src and Nrf2 in the nuclei of GMCs cultured with HG, thereby enhancing the Nrf2 accumulation in the nuclei of GMCs. Our data suggested that AST promoted the Nrf2/ARE signaling by upregulating the Cx43 protein level to prevent renal fibrosis triggered by HG in GMCs and db/db mice. c-Src acted as a mediator in these processes.[Abstract] [Full Text] [Related] [New Search]