These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An Innovative Multiplexed and Flexible Molecular Approach for the Differential Detection of Arboviruses. Author: Leon F, Meyer A, Reynier R, Blanc E, Bruyère-Ostells L, Brès JC, Simonin Y, Salinas S, Gallian P, Leparc-Goffart I, Biron A, Dupont-Rouzeyrol M, Morvan F, Vasseur JJ, Foulongne V, Van de Perre P, Cantaloube JF, Fournier-Wirth C. Journal: J Mol Diagn; 2019 Jan; 21(1):81-88. PubMed ID: 30268947. Abstract: Nucleic acid testing during the preseroconversion viremic phase is required to differentially diagnose arboviral infections. The continuing emergence of arboviruses, such as Zika virus (ZIKV), dengue virus (DENV), and chikungunya virus (CHIKV), necessitates the development of a flexible diagnostic approach. Similar clinical signs and the priority to protect pregnant women from ZIKV infection indicate that the differential diagnosis of arboviruses is essential for effective patient management, clinical care, and epidemiologic surveillance. We describe an innovative diagnostic approach that combines generic RT-PCR amplification and identification by hybridization to specific probes. Original tetrathiolated probes were designed for the robust, sensitive, and specific detection of amplified arboviral genomes. The limit of detection using cultured and quantified stocks of whole viruses was 1 TCID50/mL for DENV-1, DENV-3, and CHIKV and 10 TCID50/mL for DENV-2, DENV-4, and ZIKV. The assay had 100% specificity with no false-positive results. The approach was evaluated using 179 human samples that previously tested as positive for the presence of ZIKV, DENV, or CHIKV genomes. Accordingly, the diagnostic sensitivity for ZIKV, DENV, and CHIKV was 87.88% (n = 58/66), 96.67% (n = 58/60), and 94.34% (n = 50/53), respectively. This method could be easily adapted to include additional molecular targets. Moreover, this approach may also be adapted to develop highly specific, sensitive, and easy to handle platforms dedicated to the multiplex screening and identification of emerging viruses.[Abstract] [Full Text] [Related] [New Search]