These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Air monitoring of new and legacy POPs in the Group of Latin America and Caribbean (GRULAC) region.
    Author: Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Ibarra MV, Miglioranza KSB, Rivadeneira IM, Pozo K, Aristizábal Zuluaga BH.
    Journal: Environ Pollut; 2018 Dec; 243(Pt B):1252-1262. PubMed ID: 30268978.
    Abstract:
    A special initiative in the Global Atmospheric Passive Sampling (GAPS) Network was implemented to provide information on new and emerging persistent organic pollutants (POPs) in the Group of Latin America and Caribbean (GRULAC) region. Regional-scale atmospheric concentrations of the new and emerging POPs hexachlorobutadiene (HCBD), pentachloroanisole (PCA) and dicofol indicators (breakdown products) are reported for the first time. HCBD was detected in similar concentrations at all location types (<20-120 pg/m3). PCA had elevated concentrations at the urban site Concepción (Chile) of 49-222 pg/m3, with concentrations ranging <1-8.5 pg/m3 at the other sites in this study. Dicofol indicators were detected at the agricultural site of Sonora (Mexico) at concentrations ranging 30-117 pg/m3. Legacy POPs, including a range of organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs), were also monitored to compare regional atmospheric concentrations over a decade of monitoring under the GAPS Network. γ-hexachlorocyclohexane (HCH) and the endosulfans significantly decreased (p < 0.05) from 2005 to 2015, suggesting regional levels are decreasing. However, there were no significant changes for the other legacy POPs monitored, likely a reflection of the persistency and slow decline of environmental levels of these POPs. For the more volatile OCs, atmospheric concentrations derived from polyurethane foam (PUF) (acting as an equilibrium sampler) and sorbent impregnated PUF (SIP) (acting as a linear phase sampler), were compared. The complimentary methods show a good agreement of within a factor of 2-3, and areas for future studies to improve this agreement are further discussed.
    [Abstract] [Full Text] [Related] [New Search]