These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of deletion and insertion mutations in the ilvM gene of Escherichia coli. Author: Lu MF, Umbarger HE. Journal: J Bacteriol; 1987 Feb; 169(2):600-4. PubMed ID: 3027038. Abstract: A plasmid was constructed that carried the ilvG and ilvM genes and the associated promoter and leader regions derived from the K-12 strain of Escherichia coli. The ilvG gene contained a + 1 frameshift mutation that enabled the plasmid to specify acetohydroxyacid synthase II. The plasmid was modified by deletions in the terminus of and within the ilvM gene and by insertions into the ilvM gene. The effects of these modifications on the phenotypes of the plasmids were examined in a host strain that lacked all three isozymes of acetohydroxyacid synthase. Most of the ilvM mutant plasmids so obtained permitted growth of the host strain in the absence of isoleucine but not in the absence of valine. Growth in the presence of valine, however, was very slow. No significant acetohydroxyacid synthase activity could be detected even when the cells were grown in a valine-supplemented minimal medium. It thus appears that, at most, only a very low level of acetohydroxyacid synthase activity occurred with ilvG in the absence of ilvM and that low activity was more effective for acetohydroxy butyrate formation than for acetolactate formation. The ilvM gene product could be formed under the control of the lac promoter in the presence of a plasmid that carried an in-frame gene fusion between lacZ and the downstream portion of ilvG. Extracts from the host strain that contained such an IlvG(-)-IlvM+ plasmid could be combined with extracts from cells that contained one of the IlvG+-IlvM- plasmids to yield acetohydroxyacid synthase activity. Thus, the ilvM and ilvG genes could be expressed independently of each other.[Abstract] [Full Text] [Related] [New Search]