These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phorbol esters and dioctanoylglycerol block anti-IgM-stimulated phosphoinositide hydrolysis in the murine B cell lymphoma WEHI-231.
    Author: Gold MR, DeFranco AL.
    Journal: J Immunol; 1987 Feb 01; 138(3):868-76. PubMed ID: 3027166.
    Abstract:
    Cross-linking of membrane IgM (mIgM) on both normal resting B cells and on the murine B cell lymphoma WEHI-231 activates the phosphoinositide signal transduction pathway. The initial event in this pathway is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2), which results in the generation of two second-messengers: inositol trisphosphate (InsP3), which can cause the release of Ca2+ from intracellular stores, and diacylglycerol (DG), which activates protein kinase C. In examining the effects of exogenous activation of protein kinase C on WEHI-231 cells, we found that phorbol esters blocked some of the biologic effects of anti-IgM on WEHI-231 cells. The mechanism of this effect was investigated. Phorbol ester treatment of WEHI-231 cells blocked the ability of anti-IgM to stimulate production of inositol phosphates and accumulation of phosphatidic acid, the phosphorylated product of DG. Phorbol esters also blocked the ability of anti-IgM to cause an increase in intracellular Ca2+. Thus, it is clear that phorbol esters block anti-IgM-stimulated PtdInsP2 hydrolysis in WEHI-231 cells. In addition, a synthetic DG, dioctanoylglycerol (diC8), also blocked anti-IgM-stimulated inositol phosphate production and the anti-IgM-stimulated rise in cytoplasmic Ca2+. The ability of phorbol esters and diC8 to block mIgM-mediated signaling may reflect a feedback inhibition mechanism by which activated protein kinase C limits the magnitude and duration of receptor signaling.
    [Abstract] [Full Text] [Related] [New Search]