These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fully Automated Forensic Routine Dried Blood Spot Screening for Workplace Testing.
    Author: Gaugler S, Al-Mazroua MK, Issa SY, Rykl J, Grill M, Qanair A, Cebolla VL.
    Journal: J Anal Toxicol; 2019 Apr 01; 43(3):212-220. PubMed ID: 30272233.
    Abstract:
    In this study, we describe the transfer of a new and fully automated workflow for the cost-effective drug screening of large populations based on the dried blood spot (DBS) technology. The method was installed at a routine poison control center and applied for DBS and dried urine spot (DUS) samples. A fast method focusing on the high-interest drugs and an extended screening method were developed on the automated platform. The dried cards were integrated into the automated workflow, in which the cards were checked in a camera recognition system, spiked with deuterated standards via an in-built spraying module and directly extracted. The extract was transferred online to an analytical LC column and then to the electrospray ionization tandem mass spectrometry system. The target compounds were analyzed in positive multiple-reaction monitoring mode. Before each sample batch or analysis day, calibration samples were measured to balance inter-day variations and to avoid false negative samples. An internal standard was integrated prior the sample extraction to allow in process control. A total of 28 target compounds were analyzed and directly extracted within 5 min per sample. This fast screening method was then extended to 20 min, enabling the usage of a Forensic Toxicology Database to screen over 1,200 drugs. The method gives confident positive/negative results for all tested drugs at their individual cut-off concentration. Good precision (±15%, respectively ±20% at limit of quantification) and correlation within the calibration range from 5 to 1,000 ng/mL was obtained. The method was finally applied to real cases from the lab and cross-checked with the existing methodologies.
    [Abstract] [Full Text] [Related] [New Search]