These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of Catalytic DNA Activities with Thermosensitive Gold Nanoparticle Surfaces.
    Author: Li F, Gao Q, Yang M, Guo W.
    Journal: Langmuir; 2018 Dec 11; 34(49):14932-14939. PubMed ID: 30277792.
    Abstract:
    The regulation of the activities of catalytic DNA is of great importance in many applications, especially in biosensing, controllable drug carriers, and gene therapy. In this work, the surfaces of gold nanoparticles (AuNPs) are simultaneously modified with a thermoresponsive polymer, poly( N-isopropylacrylamide) (pNIPAM), and catalytic DNA to form thermosensitive catalytic DNA/pNIPAM/AuNP systems. The thermosensitive pNIPAM on the surfaces of AuNPs enables the temperature-controlled catalytic activities of the system in a narrow temperature range. The catalytic DNA/pNIPAM/AuNP system exhibits almost no catalytic activity at temperatures below the lower critical solution temperature (LCST) of pNIPAM and become highly catalytic when the temperature is higher than the LCST. Two kinds of catalytic DNA, the entropy-driven DNA catalytic network and the Mg2+-dependent DNAzyme, were chosen as model catalytic systems, and the results showed that the regulation of catalytic activities for both systems was achieved efficiently. These systems may have important potentials in future biosensing and biomedical applications.
    [Abstract] [Full Text] [Related] [New Search]