These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer.
    Author: Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Hassanzadeh-Khayat M, Emrani AS, Abnous K.
    Journal: Biosens Bioelectron; 2019 Jan 01; 123():14-18. PubMed ID: 30278340.
    Abstract:
    This study describes a novel electrochemical aptasensor for detection of α-synuclein (α-syn) oligomer, an important biomarker related to Parkinson's and Alzheimer's diseases. The sensing platform is based on exonuclease I (Exo I), terminal deoxynucleotidyl transferase (TdT) and methylene blue. The aptasensor exploits the improved sensitivity because of applications of TdT and Exo I and also a label-free aptamer (Apt). Furthermore, direct immobilization of complementary strand of aptamer (CS) instead of Apt on the surface of electrode prohibits Apt self-assembled monolayer aggregation and keeps the function of the Apt. In the absence of α-syn oligomer, TdT enhances lengths of Apt and CS and so, increases accumulation of methylene blue as redox agent on the surface of electrode, leading to a strong current signal. While in the presence of α-syn oligomer, Exo I digests CS on the electrode surface, resulting in less accumulation of methylene blue on the electrode surface and a weak current signal. The relative electrochemical signal of the aptasensor increased linearly with the logarithm of α-syn oligomer concentration in the range from 60 pM to 150 nM. The detection limit was 10 pM. Furthermore, the sensor showed high precision and repeatability for detection of α-syn oligomer in serum samples.
    [Abstract] [Full Text] [Related] [New Search]