These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Field potential evidence for long-term potentiation of feed-forward inhibition in the rat dentate gyrus. Author: Kairiss EW, Abraham WC, Bilkey DK, Goddard GV. Journal: Brain Res; 1987 Jan 13; 401(1):87-94. PubMed ID: 3028573. Abstract: Trains of high-frequency stimulation to the perforant path cause (i) long-term potentiation (LTP) of the population excitatory post-synaptic potential (EPSP), (ii) a lasting increase in the population spike, and (iii) a lasting alteration of the relationship between the EPSP and population spike (E-S relationship), consisting of a decreased x-intercept and decreased slope of the linear regression. To compare the thresholds of these changes, we applied a series of trains, increasing in duration from below LTP threshold. The EPSP potentiated with about the same low threshold as the reduction in E-S slope, whereas the reduction in E-S x-intercept required longer trains. In the second experiment, LTP of the EPSP was reduced by concurrent high-frequency stimulation of the commissural input and a lasting reduction of the population spike height was observed. In a third experiment, picrotoxin, an antagonist of gamma-aminobutyric acid (GABA)-mediated inhibition, blocked the decrease in slope of the E-S relationship which normally accompanies LTP. These results imply that perforant path/granule cell LTP is normally accompanied by long-term potentiation of a feed-forward inhibitory pathway which may involve interneurones.[Abstract] [Full Text] [Related] [New Search]