These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China.
    Author: Qiao K, Wu Z, Pei X, Liu Q, Shang D, Zheng J, Du Z, Zhu W, Wu Y, Lou S, Guo S, Chan CK, Pathak RK, Hallquist M, Hu M.
    Journal: J Environ Sci (China); 2018 Nov; 73():69-77. PubMed ID: 30290873.
    Abstract:
    Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55g/cm3, on average. The effective particle density distributions were dominated by a mode peaked at around 1.5g/cm3 for 50 to 350nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6g/cm3 for 150, 240, and 350nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth.
    [Abstract] [Full Text] [Related] [New Search]