These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Estimation of the number and turnover rate of Na+/H+ exchangers in lymphocytes. Effect of phorbol ester and osmotic shrinking.
    Author: Dixon SJ, Cohen S, Cragoe EJ, Grinstein S.
    Journal: J Biol Chem; 1987 Mar 15; 262(8):3626-32. PubMed ID: 3029118.
    Abstract:
    Rat thymic lymphocytes possess an amiloride-sensitive Na+/H+ exchanger in their plasma membrane. Kinetic studies revealed that 5-(N-methyl-N-isobutyl)amiloride (MIA) was a more potent inhibitor of the antiport than amiloride (cf. apparent Ki of 174 nM and 6 microM, respectively). Inhibition by MIA was rapid (less than 5 s) and readily reversible. [3H]MIA binding to whole cells was assayed by rapid centrifugation following short (5 s) incubations to minimize nonspecific binding. A saturable binding component (Kd approximately equal to 170 nM) which was displaced by amiloride was detected. In contrast, there was no significant amiloride-displaceable binding to human erythrocytes, which have comparatively little Na+/H+ exchange activity. In lymphocytes, the ability of amiloride and several of its analogs to displace [3H]MIA correlated with their potency as inhibitors of the antiport. Both kinetic and binding studies revealed that extracellular H+, but not Na+, inhibited the interaction of MIA with its receptor(s). Taken together, these data suggest that [3H]MIA binds to the Na+/H+ exchanger. Scatchard analysis revealed that [3H]MIA bound to a maximum of 8000 high affinity sites/cell. Activation of Na+/H+ exchange by osmotic shrinking or by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate was not accompanied by a significant change in [3H]MIA binding. Given an upper limit of 8000 functional sites/thymocyte, we estimate that the turnover number of each maximally activated exchanger is at least 2000 cycles/s.
    [Abstract] [Full Text] [Related] [New Search]