These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-182-5p attenuates cerebral ischemia-reperfusion injury by targeting Toll-like receptor 4.
    Author: Wang J, Xu Z, Chen X, Li Y, Chen C, Wang C, Zhu J, Wang Z, Chen W, Xiao Z, Xu R.
    Journal: Biochem Biophys Res Commun; 2018 Nov 02; 505(3):677-684. PubMed ID: 30292407.
    Abstract:
    Cerebral ischemia-reperfusion-induced microglial activation causes neuronal death through the release of inflammatory cytokines. Increasing evidence suggests that microRNAs (miRNAs) exert a neuroprotective effect by modulating the inflammatory process in cerebral ischemia-reperfusion injury. Furthermore, Toll-like receptor 4 (TLR4) is increasingly being considered to have a significant role in the regulation of inflammation. However, whether miRNAs mediate their neuroprotective effects by regulating TLR4-mediated inflammatory responses remains unknown. To explore this gap in the literature, we conducted both in vitro and in vivo experiments. In vitro: BV2 cells were activated by oxygen-glucose deprivation (OGD). TLR4 and inflammatory cytokine (TNF-a, IL-6, and IL-1β) transcription and translation expression levels were assessed using RT-PCR, ELISA, and western blot. BV2 cells were transfected with miR-182-5p mimics, inhibitors, siTLR4, or negative control (NC) using lipofectamine 2000 reagent. To confirm whether TLR4 is a direct target of miR-182-5p, we performed a luciferase reporter assay. In BV2 cells, we observed that OGD upregulated TLR4 expression, but downregulated miR-182-5p expression. We determined that miR-182-5p inhibited TLR4 by directly binding to its 3'-UTR. Furthermore, miR-182-5p suppressed the release of TNF-a, IL-6, and IL-1β. In vivo: A middle cerebral artery occlusion (MCAO) rat model was used to mimic cerebral ischemia-reperfusion. Iba1 and TLR4 double staining was used to demonstrate that the target of miR-182-5p in microglial cells, and the mediator of the anti-inflammatory effect, is TLR4. TTC staining was performed to evaluate the infarct volume. Compared to the animals treated with miR-182-5p NC and normal saline, rats treated with miR-182-5p mimics demonstrated significantly enhanced neurological functions. TTC staining results were consistent with neurological function test findings. In summary, our data suggested that miR-182-5p exhibits potential neuroprotective effects in the cerebral ischemia-reperfusion injury via the regulation of the TLR4-mediated inflammatory response.
    [Abstract] [Full Text] [Related] [New Search]