These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discriminative stimulus properties of (+)-N-allylnormetazocine in the rat: correlations with (+)-N-allylnormetazocine and phencyclidine receptor binding. Author: Steinfels GF, Tam SW, Cook L. Journal: Psychopharmacology (Berl); 1987; 91(1):5-9. PubMed ID: 3029793. Abstract: Recent studies have identified a stereospecific (+)-NANM binding site that binds psychotomimetic opioids and phencyclidine (PCP) but has a distribution in brain different from the PCP binding site. Since (+)-NANM has no opioid activity and (-)-NANM has opioid activity, rats were trained to discriminate (+)-NANM from saline in order to develop an ability to distinguish the (+)-NANM cues from other opioid agonist and antagonist activities. Cyclazocine, PCP, and ketamine all produced (+)-NANM-like stimuli in a dose-dependent manner. Behaviorally, cyclazocine and PCP are equipotent to (+)-NANM whereas ketamine is 6.7 times less potent than (+)-NANM. Pentazocine had the highest affinity for the (+)-[3H]NANM binding site, yet did not produce (+)-NANM-like discriminative stimuli. By contrast, ketamine had the lowest binding affinity for the (+)-[3H]NANM binding site and did produce (+)-NANM-like discriminative stimuli. Drug discrimination potencies relative to (+)-NANM were not predictive of relative binding affinities at (+)-NANM or PCP binding sites, although there was a trend toward a stronger correlation with the PCP binding site. Therefore, the discriminative stimulus properties of (+)-NANM cannot be explained by pharmacologic actions at either (+)-NANM or PCP binding sites alone, and may involve concurrent actions at both sites.[Abstract] [Full Text] [Related] [New Search]