These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition and decision-processing speed are associated with performance on dynamic posturography in older adults.
    Author: Redfern MS, Chambers AJ, Sparto PJ, Furman JM, Jennings JR.
    Journal: Exp Brain Res; 2019 Jan; 237(1):37-45. PubMed ID: 30302490.
    Abstract:
    Changes in cognition due to age have been associated with falls and reduced standing postural control. Sensory integration is one component of postural control that may be influenced by certain aspects of cognitive functioning. This study investigated associations between measures of cognitive function and sensory integration capabilities for healthy young and older adults. Dynamic posturography was performed using the Equitest Sensory Organization Test (SOT) protocol to evaluate sensory integration during standing using sway-referencing of the platform and/or visual scene to alter somatosensory and visual inputs. The Equilibrium Score was used as a measure of sway. Cognitive testing examined aspects of cognitive function that have been associated with falls in older adults. A correlational analysis investigated associations between the cognitive measures and postural sway during the altered sensory conditions of the SOT. For older subjects only, slower decision-processing speed was associated with increased sway during SOT conditions whenever somatosensation was altered. Reduced perceptual inhibition was associated with increased sway whenever somatosensation was intact, and particularly when vision was altered in the presence of somatosensation. Visuospatial construct ability was associated with sway only when the eyes were closed during altered somatosensation. Task-switching was associated with sway only when vision and somatosensation were intact. With increased age, deficits in decision speed and inhibition appear associated with the sensory integration crucial for balance maintenance. Associations are modulated by the availability of somatosensation and vision. These associations define situations and individual differences in aspects of cognition that may relate to situational loss of balance in older adults.
    [Abstract] [Full Text] [Related] [New Search]