These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemical modification of the haem propionate of cytochrome c. A re-evaluation of the reaction of cytochrome c with a water-soluble carbodi-imide. Author: Mathews AJ, Brittain T. Journal: Biochem J; 1986 Nov 15; 240(1):181-7. PubMed ID: 3030276. Abstract: Horse heart and tuna heart cytochromes c were treated with the water-soluble carbodi-imide 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide. When the reaction is followed spectroscopically two kinetic phases are apparent. Alteration of the reactivity of the proteins with such ligands as CO, however, occurs in a single phase identical with the faster phase detected spectroscopically. The modified proteins both show spectroscopic and redox properties identical with those described for the tuna heart cytochrome c derivative by Timkovich [Biochem. J. (1980) 185, 47-57]. The use of radiolabelled carbodi-imide identifies two or three sites of reactivity. However, the addition of glycine methyl ester to the reaction mixture leads to the addition of nine glycine moieties in the case of the horse protein and seven in the case of the tuna protein, indicating a larger number of reactive sites than previously reported. A further set of reaction sites was identified by peptide mapping of the modified proteins, and these sites take part in intramolecular reactions leading to internal cross-linking and the formation of an enzymically indigestible 'core particle'. The haem group was identified as a site of reaction with the carbodi-imide, and is as a consequence covalently linked to the peptide by a bond in addition to the thioether bonds normally present. In the light of these findings, the alterations in the properties of the tuna protein, subsequent to reaction with the carbodi-imide, which have been previously explained in structural terms, must be re-evaluated. This study also highlights the importance of internal cross-link formation, which can occur by intramolecular nucleophilic attack, a process that has often been overlooked by investigators employing carbodi-imide modification of carboxylate groups in proteins.[Abstract] [Full Text] [Related] [New Search]