These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Unraveling the intricate biodiversity of the benthic harpacticoid genus Nannopus (Copepoda, Harpacticoida, Nannopodidae) in Korean waters. Author: Vakati V, Eyun SI, Lee W. Journal: Mol Phylogenet Evol; 2019 Jan; 130():366-379. PubMed ID: 30308279. Abstract: Nannopus (Harpacticoida, Nannopodidae) species are abundant and widely distributed throughout the world across a variety of habitats. Nannopus is well known for high frequencies of misidentifications and thus may comprise several cryptic complexes and morphologically distinct species. Cryptic taxa are common in meiofauna communities. In this study, we aimed to identify Nannopus species using an integrative approach including molecular taxonomy. We adopted a non-destructive DNA extraction method so that morphological and molecular data could be obtained from the same specimen. We analyzed the molecular diversity and distributions of Nannopus using a total of 190 individuals. We sequenced the 190 mtCOI, 53 mtCYTB, 25 18SrDNA, and 43 28SrDNA genes from 190 individuals. Several species delimitation approaches were applied, including uncorrected p-distances for mtCOI, mtCYTB, 18SrDNA, and 28SrDNA, and Automatic Barcode Gap Discovery and Bayesian implemented Poisson tree processes for mtCOI and mtCYTB data. The maximum likelihood and Bayesian approaches were used to examine the phylogenetic relationships among individuals using the combined set of all four genes. Our species delimitation and phylogenetic analyses indicated the presence of three cryptic and six morphologically distinct species. All species are sympatric and widely distributed across mudflats ranging from the Yellow Sea to the South Sea in Korea. The divergence patterns of the four genes were not congruent. A phylogenetic tree based on the concatenated dataset was the most robust, was congruent with morphology, and suggested two major clades. We considered the validity of reinstating the genus Ilyophilus (Lilljeborg, 1902) and ultimately concluded that including all congeners in Nannopus until the type species (N. palustris Brady, 1880) is re-described was the most prudent approach.[Abstract] [Full Text] [Related] [New Search]