These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic denitrosation of diphenylnitrosamine: a possible bioactivation pathway.
    Author: Appel KE, Görsdorf S, Scheper T, Ruf HH, Rühl CS, Hildebrandt AG.
    Journal: J Cancer Res Clin Oncol; 1987; 113(2):131-6. PubMed ID: 3031080.
    Abstract:
    Nitrosodiphenylamine was tested for induction of DNA single strand breaks in rat hepatocytes and Chinese hamster V 79 cells with the alkaline filter elution assay. While in rat hepatocytes DNA damage was observed, negative results were obtained in V 79 cells. In view of the metabolic capacity of hepatocytes and the chemical structure of nitrosodiphenylamine it seems likely that cytochrome P-450-dependent, reductive denitrosation might be necessary for exerting this effect. Therefore the metabolism of nitrosodiphenylamine was investigated in phenobarbital-induced mouse liver microsomes and some of the metabolites were also tested. One metabolite was identified as diphenylamine whereas the others were identified as a ring-hydroxylated derivative of diphenylamine and its corresponding quinoneimine. Diphenylhydroxylamine which was not detected in the microsomes as a metabolite produced a significant amount of DNA single strand breaks in V 79 cells. When diphenylhydroxylamine was incubated with microsomes electron spin resonance spectrum was observed which indicated the formation of the diphenylnitroxide radical. This radical seems to be mediated by auto-oxidation rather than by enzymatic catalysis. Whether diphenylhydroxylamine might be responsible for the observed genetoxic effects of nitrosodiphenylamine assumed to be produced via active oxygen species is discussed.
    [Abstract] [Full Text] [Related] [New Search]