These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of reactive oxygen species and carbonate radical in oxcarbazepine degradation via UV, UV/H2O2: Kinetics, mechanisms and toxicity evaluation.
    Author: Liu T, Yin K, Liu C, Luo J, Crittenden J, Zhang W, Luo S, He Q, Deng Y, Liu H, Zhang D.
    Journal: Water Res; 2018 Dec 15; 147():204-213. PubMed ID: 30312793.
    Abstract:
    Oxcarbazepine (OXC) is ubiquitous in the aqueous environment. And due to its ecotoxicological effects and potential risks to human, an effective way to eliminate OXC from aqueous environment has aroused public concerns in recent years. Radical-based reactions have been shown to be an efficient way for OXC destruction, but the reactions of OXC with reactive oxygen species (ROS) and carbonate radical (CO3•-) are still unclear. In this study, we focused the degradation of OXC and ROS, CO3•- generation mechanism, and their roles in OXC degradation via UV and UV/H2O2. The triplet state of oxcarbazepine (3OXC) was found to play an important role in OXC degradation via UV. And hydroxyl radicals (OH) and singlet oxygen (1O2) were found to be the dominant ROS in OXC degradation. Superoxide radical (O2•-) did not react with OXC directly, but it may react with intermediate byproducts. Generation of CO3•- played a positive role on OXC degradation for both UV and UV/H2O2. In addition to OH, 3OXC* also contribute to CO3•- production. The second-order rate constants of OXC with OH and CO3•- were 1.7 × 1010 M-1 s-1 and 8.6 × 107 M-1 s-1, respectively. Potential OXC degradation mechanisms by OH were proposed and included hydroxylation, α-ketol rearrangement, and benzylic acid rearrangement. Compared with non-selective OH, the reactions involving CO3•- are mainly electron transfer and hydrogen abstraction. And the acute toxicity of OXC was lower after UV/H2O2 and UV/H2O2/HCO3- treatments, which was confirmed by luminescent bacterial assay (Vibrio fischeri bacterium).
    [Abstract] [Full Text] [Related] [New Search]