These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sedimentation of an RNA polymerase complex from vaccinia virus that specifically initiates and terminates transcription.
    Author: Broyles SS, Moss B.
    Journal: Mol Cell Biol; 1987 Jan; 7(1):7-14. PubMed ID: 3031483.
    Abstract:
    A high-molecular-weight protein complex that is capable of accurate transcription initiation and termination of vaccinia virus early genes without additional factors was demonstrated. The complex was solubilized by disruption of purified virions, freed of DNA by passage through a DEAE-cellulose column, and isolated by glycerol gradient sedimentation. All detectable RNA polymerase activity was associated with the transcription complex, whereas the majority of enzymes released from virus cores including mRNA (nucleoside-2'-O)methyltransferase, poly(A) polymerase, topoisomerase, nucleoside triphosphate phosphohydrolase II, protein kinase, and single-strand DNase sedimented more slowly. Activities corresponding to two enzymes, mRNA guanylyltransferase (capping enzyme) and nucleoside triphosphate phosphohydrolase I (DNA-dependent ATPase), partially sedimented with the complex. Silver-stained polyacrylamide gels, immunoblots, and autoradiographs confirmed the presence of subunits of vaccinia virus RNA polymerase, mRNA guanylyltransferase, and nucleoside triphosphate phosphohydrolase I, as well as additional unidentified polypeptides, in fractions with transcriptase activity. A possible role for the DNA-dependent ATPase was suggested by studies with ATP analogs with gamma-S or nonhydrolyzable beta-gamma-phosphodiester bonds. These analogs were used by vaccinia virus RNA polymerase to nonspecifically transcribe single-stranded DNA templates but did not support accurate transcription of early genes by the complex. Transcription also was sensitive to high concentrations of novobiocin; however, this effect could be attributed to inhibition of RNA polymerase or ATPase activities rather than topoisomerase.
    [Abstract] [Full Text] [Related] [New Search]