These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Generative Adversarial Network for Medical Images (MI-GAN).
    Author: Iqbal T, Ali H.
    Journal: J Med Syst; 2018 Oct 12; 42(11):231. PubMed ID: 30315368.
    Abstract:
    Deep learning algorithms produces state-of-the-art results for different machine learning and computer vision tasks. To perform well on a given task, these algorithms require large dataset for training. However, deep learning algorithms lack generalization and suffer from over-fitting whenever trained on small dataset, especially when one is dealing with medical images. For supervised image analysis in medical imaging, having image data along with their corresponding annotated ground-truths is costly as well as time consuming since annotations of the data is done by medical experts manually. In this paper, we propose a new Generative Adversarial Network for Medical Imaging (MI-GAN). The MI-GAN generates synthetic medical images and their segmented masks, which can then be used for the application of supervised analysis of medical images. Particularly, we present MI-GAN for synthesis of retinal images. The proposed method generates precise segmented images better than the existing techniques. The proposed model achieves a dice coefficient of 0.837 on STARE dataset and 0.832 on DRIVE dataset which is state-of-the-art performance on both the datasets.
    [Abstract] [Full Text] [Related] [New Search]