These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional myology of the thoracic limb in Pampas fox (Lycalopex gymnocercus): a descriptive and comparative analysis.
    Author: de Souza Junior P, Santos LMRPD, Viotto-Souza W, de Carvalho NDC, Souza EC, Kasper CB, Abidu-Figueiredo M, Santos ALQ.
    Journal: J Anat; 2018 Dec; 233(6):783-806. PubMed ID: 30318591.
    Abstract:
    The characteristics of the muscles of the thoracic limb were evaluated in 22 specimens of Lycalopex gymnocercus. Descriptive and comparative analyses showed similarity with other canids in terms of topography and tendon insertions. Differences with the domestic dog were observed in the pectoralis profundus, triceps brachii and interflexorii muscles. Intraspecific variations were observed in the rhomboideus capitis, serratus ventralis cervicis, extensor carpi radialis, extensor digiti I and II, lumbricales, flexor digiti I brevis, abductor digiti I brevis, and flexor digiti V muscles. The analyses of muscle architecture carried out in nine specimens showed that there was no difference in muscle percentage mass in the thoracic limb of males and females, but a young specimen showed significant lower percentage mass. The triceps brachii caput longus muscle showed the greatest mass, the subscapularis muscle showed the greatest physiological cross-sectional area value, and the extrinsic muscles, in general, presented the longest fascicles and higher architectural indexes. Muscle architecture data were compatible with those of a thoracic limb adapted to fast cursorial locomotion that prioritizes movements in a sagittal plane instead of rotation or adduction/abduction. There was a high association between functional percentage mass of the muscles in the thoracic limb and phylogeny in the Carnivora order. It may be inferred that carnivoran muscle mass is largely determined by phylogeny.
    [Abstract] [Full Text] [Related] [New Search]