These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle.
    Author: Clausen T, Flatman JA.
    Journal: Am J Physiol; 1987 Apr; 252(4 Pt 1):E492-9. PubMed ID: 3031991.
    Abstract:
    To identify possible cause-effect relationships between changes in active Na+-K+ transport, resting membrane potential, and glucose transport, the effects of insulin and epinephrine were compared in rat soleus muscle. Epinephrine, which produced twice as large a hyperpolarization as insulin, induced only a modest increase in sugar transport. Ouabain, at a concentration (10(-3) M) sufficient to block active Na+-K+ transport and the hyperpolarization induced by the two hormones, did not interfere with sugar transport stimulation. After Na+ loading in K+-free buffer, the return to K+-containing standard buffer caused marked stimulation of active Na+-K+ transport, twice the hyperpolarization produced by insulin but no change in sugar transport. The insulin-induced activation of the Na+-K+ pump leads to decreased intracellular Na+ concentration and hyperpolarization, but none of these events can account for the concomitant activation of the glucose transport system. The stimulating effect of insulin on active Na+-K+ transport was not suppressed by amiloride, indicating that in intact skeletal muscle it is not elicited by a primary increase in Na+ influx via the Na+/H+-exchange system.
    [Abstract] [Full Text] [Related] [New Search]