These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physicochemical QSAR Analysis of Passive Permeability Across Caco-2 Monolayers. Author: Lanevskij K, Didziapetris R. Journal: J Pharm Sci; 2019 Jan; 108(1):78-86. PubMed ID: 30321548. Abstract: Caco-2 cell line is frequently used as a simplified in vitro model of intestinal absorption. In this study, a database of 1366 Caco-2 permeability coefficients (Pe) for 768 diverse drugs and drug-like compounds was compiled from public sources. The collected data represent permeation rates measured at varying experimental conditions (pH from 4.0 to 8.0, and stirring rates from 0 to >1000 rpm) that presumably account for passive diffusion across mucosal epithelium. These data were subjected to multistep nonlinear regression analysis using a minimal set of physicochemical descriptors (octanol-water log D, pKa, hydrogen bonding potential, and molecular size). The model was constructed in a mechanistic manner incorporating the following components: (i) a hydrodynamic equation of size- and charge-specific along with nonspecific diffusion across the paracellular pathway; (ii) transcellular diffusion represented by thermodynamic membrane/water partitioning ratio; (iii) stirring-dependent limit of maximum achievable permeability due to the presence of unstirred water layer. The obtained model demonstrates good accuracy of log Pe predictions with a residual mean square error <0.5 log units for all training and validation sets. Given its robust performance and straightforward interpretation in terms of simple physicochemical properties, the proposed model may serve as a valuable tool to guide drug discovery efforts toward readily absorbable compounds.[Abstract] [Full Text] [Related] [New Search]