These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrodynamic and water quality modeling of a large floodplain lake (Poyang Lake) in China. Author: Li B, Yang G, Wan R, Li H. Journal: Environ Sci Pollut Res Int; 2018 Dec; 25(35):35084-35098. PubMed ID: 30328037. Abstract: Floodplain lakes are valuable to humans because of their various functions and are characterized by dramatic hydrological condition variations. In this study, a two-dimensional coupled hydrodynamic and water quality model was applied in a large floodplain lake (i.e., Poyang Lake), to investigate spatial and temporal water quality variations. The model was established based on detailed data such as lake terrain, hydrological, and water quality. Observed lake water level and discharge and water quality parameters (TN, TP, CODMn, and NH4-N) were used to assess model performance. The hydrodynamic model results showed satisfactory results with R2 and MRE values ranging between 0.96 and 0.99 and between 2.45 and 6.14%, respectively, for lake water level simulations. The water quality model basically captured the temporal variations in water quality parameters with R2 of TN, TP, CODMn, and NH4-N simulation ranges of 0.56-0.91, 0.44-0.66, 0.64-0.67, and 0.44-0.57, respectively, with TP of Xingzi Station and CODMn of Duchang Station excluded, which may be further optimized with supplementation of sewage and industrial discharge data. The modeled average TN, TP, CODMn, and NH4-N concentrations across the lake were 1.36, 0.05, 1.99, and 0.48 mg/L, respectively. The modeled spatial variations of the lake showed that the main channel of the lake acted as a main pollutant passageway, and the east part of the lake suffered high level of pollution. In addition, consistent with previous water quality evaluations based on field investigations, water quality was the highest (average TN = 1.35 mg/L) during high water level periods and the poorest (average TN = 1.96 mg/L) during low water level periods. Scenario analysis showed that by decreasing discharge of upstream flow by 20% could result in the increase of TN and TP concentrations by 25.6% and 23.2% respectively. In summary, the model successfully reproduced the complex water and pollutant exchange processes in the systems involving upstream rivers, the Poyang Lake, and the Yangtze River. The model is beneficial for future modeling of the impact of different load reduction and other hydrological regime changes on water quality variation and provides a relevant example for floodplain lake management.[Abstract] [Full Text] [Related] [New Search]