These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of rat brain opioid receptors by cannabinoids.
    Author: Vaysse PJ, Gardner EL, Zukin RS.
    Journal: J Pharmacol Exp Ther; 1987 May; 241(2):534-9. PubMed ID: 3033219.
    Abstract:
    The interaction of delta 9-tetrahydrocannabinol (delta 9-THC) and related cannabinoids with opioid receptors of neuronal membranes has been investigated. Treatment of membranes with delta 9-THC consistently decreased specific in vitro binding of [3H]dihydromorphine (mu opioid) in a dose-dependent fashion. Similar dose-dependent changes were elicited by cannabidiol and (+/-)-hexahydrocannabinol. Equilibrium binding studies in which brain membranes were titrated with [3H]dihydromorphine in the presence of delta 9-THC demonstrated that the decrease in [3H]dihydromorphine binding is due to a reduction in the number of binding sites, with no significant alteration in receptor affinity. This result suggests that the interaction of delta 9-THC with opioid receptors is a noncompetitive one. Delta 9-THC also inhibited the binding of the delta opioid [3H]D-Pen2, D-Pen5-enkephalin and the opioid antagonist [3H]naloxone (Ki = 16 and 19 microM, respectively) but failed to inhibit the binding of the kappa opioid [3H]ethylketocyclazocine (after suppression of mu and delta receptor binding), the phencyclidine analog [3H]N-(1-[2-theinyl]cyclohexyl)piperidine, the dopamine antagonist [3H]spiroperidol or the muscarinic antagonist [3H]quinuclidinyl benzilate. Moreover, delta 9-THC inhibited the binding of [3H]etorphine (potent opioid agonist) to solubilized, partially purified opioid receptors with a Ki value similar to that observed for the membrane-bound receptors. This finding indicates that the allosteric modulation of the opioid receptor by delta 9-THC is the result of a direct interaction with the receptor protein or with a specific protein-lipid complex and not merely the result of a perturbation of the lipid bilayer of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]