These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Perisaccadic perceptual mislocalization is different for upward saccades.
    Author: Grujic N, Brehm N, Gloge C, Zhuo W, Hafed ZM.
    Journal: J Neurophysiol; 2018 Dec 01; 120(6):3198-3216. PubMed ID: 30332326.
    Abstract:
    Saccadic eye movements, which dramatically alter retinal images, are associated with robust perimovement perceptual alterations. Such alterations, thought to reflect brain mechanisms for maintaining perceptual stability in the face of saccade-induced retinal image disruptions, are often studied by asking subjects to localize brief stimuli presented around the time of horizontal saccades. However, other saccade directions are not usually explored. Motivated by recently discovered asymmetries in upper and lower visual field representations in the superior colliculus, a structure important for both saccade generation and visual analysis, we observed significant differences in perisaccadic perceptual alterations for upward saccades relative to other saccade directions. We also found that, even for purely horizontal saccades, perceptual alterations differ for upper vs. lower retinotopic stimulus locations. Our results, coupled with conceptual modeling, suggest that perisaccadic perceptual alterations might critically depend on neural circuits, such as superior colliculus, that asymmetrically represent the upper and lower visual fields. NEW & NOTEWORTHY Brief visual stimuli are robustly mislocalized around the time of saccades. Such mislocalization is thought to arise because oculomotor and visual neural maps distort space through foveal magnification. However, other neural asymmetries, such as upper visual field magnification in the superior colliculus, may also exist, raising the possibility that interactions between saccades and visual stimuli would depend on saccade direction. We confirmed this behaviorally by exploring and characterizing perisaccadic perception for upward saccades.
    [Abstract] [Full Text] [Related] [New Search]