These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gene Mutation Analysis and Prenatal Diagnosis of the Ornithine Transcarbamylase (OTC) Gene in Two Families with Ornithine Transcarbamylase Deficiency.
    Author: Li S, Cai Y, Shi C, Liu M, Liu B, Lin L, Xiao X, Hao H.
    Journal: Med Sci Monit; 2018 Oct 18; 24():7431-7437. PubMed ID: 30333473.
    Abstract:
    BACKGROUND The aim of this study was to perform gene detection in 2 clinical cases of highly suspected ornithine transcarbamylase deficiency (OTCD) pediatric patients by first-generation sequencing technology in order to confirm the pathogenic genetic factors of their families and allow the families to undergo genetic counselling and prenatal diagnosis. MATERIAL AND METHODS The peripheral DNA samples of 2 children with highly suspected OTCD (the probands) and their parents were collected. DNA fragments corresponding to exons 1-10 of the OTC gene from the samples were amplified using polymerase chain reaction (PCR), and then subjected to Sanger sequencing to confirm the pathogenic mutation sites. RESULTS The probands were both confirmed to have OTCD. The proband in Family 1 was a male carrying a c.867+1G>C mutation at a splice site within the OTC gene. The gene detection results of amniotic fluid cells at 16 weeks of pregnancy showed that the fetus was a male who also carried the c.867+1G>C mutation. The proband in Family 2 was a male carrying a c.782T>C(p. I261T) mutation in the OTC gene. The gene detection results of amniotic fluid cells at 18 weeks showed that the fetus was a male without pathogenic mutations in the OTC gene. The gene detection results of peripheral blood from the fetus after birth were consistent with those obtained from amniotic fluid cells. CONCLUSIONS Pediatric children who are clinically suspected of OTCD can receive a definitive diagnosis through OTC gene detection.
    [Abstract] [Full Text] [Related] [New Search]