These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Facile, Label-Free, and Universal Biosensor Platform Based on Target-Induced Graphene Oxide Constrained DNA Dissociation Coupling with Improved Strand Displacement Amplification.
    Author: Huang Z, Luo Z, Chen J, Xu Y, Duan Y.
    Journal: ACS Sens; 2018 Nov 26; 3(11):2423-2431. PubMed ID: 30335968.
    Abstract:
    In this work, we report a low-cost and easy operation biosensor platform capable of detection of various analytes with high sensitivity and good selectivity. By ingeniously assigning the specific aptamer into a primer-template integrated DNA template, and using monolayer graphene oxide as a reversible and nonspecific inhibitor, the simple biosensor platform is set up. Without a target, the DNA template is constrained by the graphene oxide sheet and results in low signal. In the presence of a target, the constrained DNA template is released from the graphene oxide surface via a target-induced aptamer conformational change, and further amplified through the improved strand displacement amplification reaction. Therefore, the target detection is simply converted to DNA detection, and a correlation between target concentration and fluorescence signal can be set up. As a result, dozens-fold signal enhancement, high sensitivity, good selectivity, and potential practicability are achieved in target detection. More importantly, the proposed biosensor platform is versatile, meaning that it can greatly facilitate the detection of a variety of analytes. Due to the low cost and easy availability of sensing materials, and the elimination of tedious detection operations, we believe that this simple and universal biosensor platform can find wide applications in biological assay and environment monitoring.
    [Abstract] [Full Text] [Related] [New Search]