These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinct binding affinities of odorant-binding proteins from the natural predator Chrysoperla sinica suggest different strategies to hunt prey. Author: Li ZQ, Zhang S, Cai XM, Luo JY, Dong SL, Cui JJ, Chen ZM. Journal: J Insect Physiol; 2018; 111():25-31. PubMed ID: 30336148. Abstract: Chrysoperla sinica is an important natural predator of many notorious agricultural pests. Understanding its olfactory mechanism can help enhance the effectiveness of C. sinica in biological control. In the present study, we investigated the tissue expression patterns of 12 odorant-binding protein (OBP) genes from C. sinica (CsinOBPs). The results of quantitative real-time polymerase chain reaction (qPCR) showed that CsinOBP1, CsinOBP2, CsinOBP3, CsinOBP4, CsinOBP6, CsinOBP7, CsinOBP9, CsinOBP10, and CsinOBP12 were predominantly expressed in the antennae of both sexes, indicating their roles in olfaction. Additionally, the qPCR analysis revealed that the 12 CsinOBP genes had distinct expression patterns, while the motif-pattern investigation suggested that the OBPs had different ligands. The ligand-binding assay showed that CsinOBP1 and CsinOBP10 had broader binding spectra than did the other OBPs. Thus, CsinOBP1 was able to bind not only plant volatiles (such as farnesol, cis-3-hexenyl hexanoate, geranylacetone, β-ionone, 2-tridecanone, and trans-nerolidol) but also the aphid alarm pheromone (E)-β-farnesene. On the other hand, CsinOBP2 and CsinOBP6 exhibited relatively narrow binding spectra, only binding ethyl benzoate. The study also identified several compounds that can potentially be used to develop slow-release agents attracting C. sinica and to improve search strategies for insect pest control.[Abstract] [Full Text] [Related] [New Search]