These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neural activity in the social decision-making network of the brown anole during reproductive and agonistic encounters. Author: Kabelik D, Weitekamp CA, Choudhury SC, Hartline JT, Smith AN, Hofmann HA. Journal: Horm Behav; 2018 Nov; 106():178-188. PubMed ID: 30342012. Abstract: Animals have evolved flexible strategies that allow them to evaluate and respond to their social environment by integrating the salience of external stimuli with internal physiological cues into adaptive behavioral responses. A highly conserved social decision-making network (SDMN), consisting of interconnected social behavior and mesolimbic reward networks, has been proposed to underlie such adaptive behaviors across all vertebrates, although our understanding of this system in reptiles is very limited. Here we measure neural activation across the SDMN and associated regions in the male brown anole (Anolis sagrei), within both reproductive and agonistic contexts, by quantifying the expression density of the immediate early gene product Fos. We then relate this neural activity measure to social context, behavioral expression, and activation (as measured by colocalization with Fos) of different phenotypes of 'source' node neurons that produce neurotransmitters and neuropeptides known to modulate SDMN 'target' node activity. Our results demonstrate that measures of neural activation across the SDMN network are generally independent of specific behavioral output, although Fos induction in a few select nodes of the social behavior network component of the SDMN does vary with social environment and behavioral output. Under control conditions, the mesolimbic reward nodes of the SDMN actually correlate little with the social behavior nodes, but the interconnectivity of these SDMN components increases dramatically within a reproductive context. When relating behavioral output to specific source node activation profiles, we found that catecholaminergic activation is associated with the frequency and intensity of reproductive behavior output, as well as with aggression intensity. Finally, in terms of the effects of source node activation on SDMN activity, we found that Ile8-oxytocin (mesotocin) populations correlate positively, while Ile3-vasopressin (vasotocin), catecholamine, and serotonin populations correlate negatively with SDMN activity. Taken together, our findings present evidence for a highly dynamic SDMN in reptiles that is responsive to salient cues in a social context-dependent manner.[Abstract] [Full Text] [Related] [New Search]