These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Zwitterion-Functionalized Graphene Oxide Incorporated Polyamide Membranes with Improved Antifouling Properties. Author: Ma W, Chen T, Nanni S, Yang L, Ye Z, Rahaman MS. Journal: Langmuir; 2019 Feb 05; 35(5):1513-1525. PubMed ID: 30346770. Abstract: In this study, zwitterionic polymer poly(sulfobetaine methacrylate) (PSBMA) functionalized graphene oxide (GO) nanocomposites (GO-PSBMA) were synthesized and incorporated into the active layer of a polyamide membrane to improve its water perm-selectivity and fouling-resistant properties. GO-PSBMA nanocomposite contained covalently tethered PSBMA brushes on GO sheets, which were grown by activators regenerated by the electron transfer-atom transfer radical polymerization technique via the "graft-from" strategy. The grafting of zwitterionic PSBMA partially neutralized the surface charge of GO and increased its dispersibility in organic solvent. The incorporation of the GO-PSBMA-1h nanocomposite in the active layer of the polyamide membrane significantly improved surface hydrophilicity of the membrane and reduced its charge density. A near twofold increase in water permeation flux, with the nonsignificant change in MgSO4 and NaCl rejection, was achieved after the incorporation of 0.3 wt % of GO-PSBMA-1h in the membrane casting solution. With an improved water affinity, the fabricated nanocomposite membrane exhibited a near 80% reduction in bacterial ( Escherichia coli) attachment in comparison to the control membrane, even after 48 h of culture. In a crossflow filtration test, the nanocomposite membrane exhibited less of a reduction in the flux associated with bovine serum albumin fouling and salt ion scaling. The results demonstrated that incorporating zwitterionic polymer-decorated GO in the polyamide skin layer is a promising method to fabricate thin film nanocomposite membranes with improved water flux and fouling resistance.[Abstract] [Full Text] [Related] [New Search]