These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimal nitrogen regimes compensate for the impacts of seedlings subjected to waterlogging stress in summer maize. Author: Wu W, Wang S, Chen H, Song Y, Zhang L, Peng C, Jing L, Li J. Journal: PLoS One; 2018; 13(10):e0206210. PubMed ID: 30352090. Abstract: A field experiment was performed to explore the compensation effects of different nitrogen (N) regimes on the growth and photosynthetic capacity in different leaf layers of the summer maize hybrid of LuYu9105 under waterlogging at the seedling stage. The results showed that waterlogging significantly decreased the maximum green leaf area (gLA) by 10.0~15.3% and 9.3~22.5%, mainly due to the reduction in the below-ear layer leaves at the silking stage in 2014 and 2015, respectively. Waterlogging also significantly decreased the ear leaf photosynthetic rate (PN), and Fv/Fm, Fv/Fo, ΦPSII and qP at the below-ear layer leaves at the mid- and late-filling stages, which was accompanied by a reduction in the duration of grain-filling (T) by 2.6~5.9%, thus resulting in a loss of grain yield by 7.0~18.5%. Interestingly, a shift in N from basal application to topdressing at the big flare stage was shown to compensate the adverse effects of waterlogging by through increased gLA and leaf photosynthetic capacity at the ear layer and the above-ear layer, as well as a greater grain-filling rate, resulting in an increase in grain yield by 9.9~27.0% and 17.8~25.8% compared to other N treatments. Therefore, this study showed that optimal nitrogen regimes during maize growth are capable of compensating for the impacts caused by waterlogging at the seedling stage.[Abstract] [Full Text] [Related] [New Search]