These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of variations in lipid composition of high-density lipoprotein on its interaction with receptors on human fibroblasts.
    Author: Brinton EA, Oram JF, Bierman EL.
    Journal: Biochim Biophys Acta; 1987 Jul 13; 920(1):68-75. PubMed ID: 3036237.
    Abstract:
    To test whether the altered lipid composition of high-density lipoprotein (HDL) particles influences their ability to interact with the HDL receptor on cultured fibroblasts, HDL3 isolated from normal and diabetic donors with different degrees of hypertriglyceridemia was subjected to binding competition, cholesterol efflux, and net cholesterol transport assays. When HDL3 particles from different subjects were incubated with cholesterol-loaded fibroblasts, the initial rates of cholesterol efflux from cells to HDL3 particles appeared to be an exclusive function of the relative ability of HDL3 to interact with the HDL receptor. Variation in lipid composition of HDL3 particles did not appear to have any significant influence on either the receptor-binding or the efflux-promoting abilities of HDL3. When the movement of cholesterol between cells and HDL3 particles was allowed to approach equilibrium, the lipid composition of HDL3 became an important factor in determining the net amount of cholesterol removed from cells, with cholesterol-deficient triacylglycerol-rich HDL3 particles having the best capacity to promote net transport of cholesterol from cells. These results suggest that the ability of HDL to bind to its cell-surface receptor, rather than variations in the lipid composition of the HDL particle, is the major determinant of cholesterol efflux from cells to HDL particles. However, the lipid composition of HDL as well as its receptor-binding activity determine the net amount of cholesterol transported from cells over long-term incubation.
    [Abstract] [Full Text] [Related] [New Search]