These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydroxamic acid mediated heterogeneous Fenton-like catalysts for the efficient removal of Acid Red 88, textile wastewater and their phytotoxicity studies. Author: Saratale RG, Sivapathan S, Saratale GD, Banu JR, Kim DS. Journal: Ecotoxicol Environ Saf; 2019 Jan 15; 167():385-395. PubMed ID: 30366272. Abstract: Heterogeneous Fenton-like catalyst and its industrial application are increasingly given importance for its non-selective mineralization of organic pollutants in broad pH range. Current study, utilized an aromatic hydroxamic acid derivative 2-hydroxypyridine-N-oxide (HpO), for the construction of iron-Hpo ligand catalyst supported on granular activated carbon (GAC). 8-Hydroxyquinoline and citric acid as non-hydroxamic aromatic and aliphatic Fenton-like catalysts were used for comparative evaluation of the efficiency with targeted catalyst (iron-HpO-GAC). This novel catalyst iron-HpO-GAC exhibits excellent efficiency in Acid Red 88 dye removal in the presence of hydrogen peroxide as oxidant at acidic, basic as well as at neutral conditions. Operational conditions for the catalytic oxidation including temperature, dye concentration, pH and catalyst dosage were systematically investigated and analyzed through kinetic studies. Thermodynamic analysis of the catalytic dye removal revealed that the system could oxidize pollutants faster with less activation energy requirement. Higher level of recyclability and stability of the catalyst with less iron leaching was achieved. Finally, the real time application of the catalyst was investigated through successful repeated treatment for actual industrial wastewater. The phytotoxicity assay (with respect to plant Phaseolus mungo) revealed that the degradation of Acid Red 88 and dye wastewater produced nontoxic metabolites which increases its potential application. This study emphasizes the viability of hydroxamate mediated efficient Fenton-like oxidation as a novel approach in designing economically viable pollutant removal technology.[Abstract] [Full Text] [Related] [New Search]