These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular cloning and characterization of a Streptococcus sanguis DNase necessary for repair of DNA damage induced by UV light and methyl methanesulfonate.
    Author: Lindler LE, Macrina FL.
    Journal: J Bacteriol; 1987 Jul; 169(7):3199-208. PubMed ID: 3036775.
    Abstract:
    We developed a method for cloning cellular nucleases from streptococci. Recombinant lambda gt11 bacteriophage containing streptococcal nuclease determinants were identified by the production of pink plaques on toluidine blue O DNase plates. We used this technique to clone a 3.2-kilobase-pair EcoRI fragment with DNase activity from the chromosome of Streptococcus sanguis. The locus was designated don (DNase one) and could be subcloned and stably maintained on plasmid vectors in Escherichia coli. Minicell analyses of various subclones of the don locus allowed us to determine the coding region and size of the Don nuclease in E. coli. The don gene product had an apparent molecular mass of 34 kilodaltons and degraded native DNA most efficiently, with lesser activity against denatured DNA and no detectable activity against RNA. S. sanguis don deletion mutants were constructed by transformation of competent cells with in vitro-prepared plasmid constructs. S. sanguis don deletion mutants retained normal transformation frequencies for exogenously added donor DNA. However, when compared with Don+ wild-type cells, these mutants were hypersensitive to DNA damage induced by UV light and methyl methanesulfonate. An S. sanguis don-specific DNA probe detected homology to chromosomal DNA isolated from Streptococcus pneumoniae and Streptococcus mutans Bratthall serogroups d and g. Our results suggested that the don locus was the S. sanguis allele of the previously described S. pneumoniae major exonuclease and was involved in repair of DNA damage. Furthermore, hybridization studies suggested that the don locus was conserved among species of oral streptococci.
    [Abstract] [Full Text] [Related] [New Search]