These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation and characterization of the nuclear gene encoding the Rieske iron-sulfur protein (RIP1) from Saccharomyces cerevisiae. Author: Beckmann JD, Ljungdahl PO, Lopez JL, Trumpower BL. Journal: J Biol Chem; 1987 Jun 25; 262(18):8901-9. PubMed ID: 3036836. Abstract: The nuclear gene encoding the Rieske iron-sulfur protein of the cytochrome bc1 complex of the mitochondrial respiratory chain has been isolated and characterized from Saccharomyces cerevisiae. We used a segment of the iron-sulfur protein gene from Neurospora crassa (Harnisch, U., Weiss, H., and Sebald, W. (1985) Eur. J. Biochem. 149, 95-99) to detect the yeast gene by Southern analysis. Five different but overlapping clones were then isolated by probing a yeast genomic library carried on YEp 13 by colony lift hybridization. Several approaches confirmed that the isolated DNA contained the gene for the Rieske iron-sulfur protein. The yeast gene, which contains no introns, can be expressed in Escherichia coli. A 900-base pair HindIII-EcoRI fragment was subcloned into pUC19 and directed the synthesis of immunodetectable protein. The gene was also identified by disruption of its chromosomal copy by homologous integration. A 400 base pair PstI-EcoRI fragment cloned adjacent to a HIS3 marker in pUC18 was used as an integrating vector. HIS+ transformants were obtained which were unable to grow on the nonfermentable carbon source glycerol. Southern analysis of the respiration deficient (gly-) strains confirmed that the chromosomal copy of the gene was disrupted, and immunoblots of extracts of the transformants indicated a lack of iron-sulfur protein. A respiration-deficient integrant was transformed to GLY+ by a 2-kilobase pair HindIII-BglII fragment, including a complete copy of the gene, carried on a multicopy episomal vector. Immunoblots with monoclonal antibodies to the iron-sulfur protein indicated overproduction of the protein in the complemented strain and revealed expression of approximately equal amounts of mature iron-sulfur protein and of a protein approximately 3 kDa larger than the mature protein in the complemented strain. A 1.2-kilobase pair segment of DNA from the clone which complemented the disrupted strains was sequenced and found to contain an open reading frame of 645 nucleotides, capable of encoding a 21,946-dalton protein. The gene is flanked by consensus signal sequences for initiation and termination which are common in yeast and is preceded by a possible upstream activating sequence. Amino acid sequence analysis of the amino-terminal end of the mature iron-sulfur protein agreed exactly with that predicted by the nucleotide sequence starting at Lys-31.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]