These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Downregulation of miR-33b promotes non-small cell lung cancer cell growth through reprogramming glucose metabolism miR-33b regulates non-small cell lung cancer cell growth. Author: Zhai S, Zhao L, Lin T, Wang W. Journal: J Cell Biochem; 2019 Apr; 120(4):6651-6660. PubMed ID: 30368888. Abstract: Glucose metabolism is a common target for cancer regulation and microRNAs (miRNAs) are important regulators of this process. Here we aim to investigate a tumor-suppressing miRNA, miR-33b, in regulating the glucose metabolism of non-small cell lung cancer (NSCLC). In our study, quantitative real-time polymerase chain reaction (qRT-PCR) showed that miR-33b was downregulated in NSCLC tissues and cell lines, which was correlated with increased cell proliferation and colony formation. Overexpression of miR-33b through miR-33b mimics transfection suppressed NSCLC proliferation, colony formation, and induced cell-cycle arrest and apoptosis. Meanwhile, miR-33b overexpression inhibited glucose metabolism in NSCLC cells. Luciferase reporter assay confirmed that miR-33b directly binds to the 3'-untranslated region of lactate dehydrogenase A (LDHA). qRT-PCR and Western blot analysis showed that miR-33b downregulated the expression of LDHA. Moreover, introducing LDHA mRNA into cells over-expressing miR-33b attenuated the inhibitory effect of miR-33b on the growth and glucose metabolism in NSCLC cells. Taken together, these results confirm that miR-33b is an anti-oncogenic miRNA, which inhibits NSCLC cell growth by targeting LDHA through reprogramming glucose metabolism.[Abstract] [Full Text] [Related] [New Search]