These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Covalent labeling of opioid receptors with 3H-D-Ala2-Leu5-enkephalin chloromethyl ketone. I. Binding characteristics in rat brain membranes. Author: Szücs M, Belcheva M, Simon J, Benyhe S, Tóth G, Hepp J, Wollemann M, Medzihradszky K. Journal: Life Sci; 1987 Jul 13; 41(2):177-84. PubMed ID: 3037220. Abstract: The chloromethyl ketone derivative of D-Ala2-Leu5-enkephalin was synthesized in a radioactive form, and the resulting compound (3H-DALECK) was used to label opioid receptors. 3H-DALECK binds with high affinity, specificity and saturability to rat brain membranes. The number of sites labeled is 130 fmoles/mg protein. Unlabeled opioids inhibited the binding of 3H-DALECK; etorphine and DAGO being most potent. A 10-fold preference for mu sites over delta was seen in site-specific competition experiments; while DALECK displayed low affinity for kappa sites of rat brain. DALECK irreversibly blocked a certain population of sites. Approximately 40% of 3H-DALECK binding at 15 min, and 60% at 60 min association time did not dissociate in the presence of a large excess of unlabeled DALECK and was resistant to washing. Autoradiography performed after SDS-PAGE revealed specific alkylation of proteins with molecular weight of 74, 65, 56, 43 and 34 kD. These results demonstrate the applicability of using 3H-DALECK to covalently label opioid receptors.[Abstract] [Full Text] [Related] [New Search]