These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effects of sesamol on systemic oxidative stress-induced cognitive impairments via regulation of Nrf2/Keap1 pathway. Author: Ren B, Yuan T, Diao Z, Zhang C, Liu Z, Liu X. Journal: Food Funct; 2018 Nov 14; 9(11):5912-5924. PubMed ID: 30375618. Abstract: Oxidative stress is considered as a pivotal culprit in neurodegenerative diseases and brain aging. The aim of present study was to investigate antioxidative and neuroprotective effects of sesamol, a phenolic lignan from sesame oil, on oxidative stress induced neuron damage and memory impairments. C57BL/6J mice were treated by intraperitoneal injections of d-galactose for 8 weeks. Sesamol treatment (0.05% w/v, in drinking water) suppressed d-galactose-induced liver damages and improved HO-1 and NQO1 mRNA levels. Behavioral tests, including Y-maze test and water maze-test, revealed that sesamol significantly improved oxidative stress-induced cognitive impairments. Meanwhile, sesamol ameliorated neuronal damage and improved BDNF level in rat hippocampus. Sesamol elevated mRNA levels and protein expressions of antioxidant enzymes HO-1 and NQO1 as well as decreased inflammatory cytokines TNF-α and IL-1β in d-galactose-treated mice serum. In addition, activity of CAT and GSH level were increased in sesamol-treated mice serum. Moreover, sesamol treatment also balanced cellular redox status, protected mitochondrial dysfunction and upregulated antioxidant enzymes by activating the Nrf2 transcriptional pathway and its nuclear translocation in H2O2-treated SH-SY5Y cells. In conclusion, these results revealed that sesamol could be a potential neuroprotective agent during aging process due to its beneficial effects on liver-brain axis.[Abstract] [Full Text] [Related] [New Search]