These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil: A mechanistic study.
    Author: Li X, Song Y, Wang F, Bian Y, Jiang X.
    Journal: J Hazard Mater; 2019 Feb 15; 364():325-331. PubMed ID: 30384242.
    Abstract:
    Whether the rhizodegradation of organic contaminants occurs in biochar- amended soil and its potential mechanisms have rarely been reported. Therefore, a study was conducted to investigate the combined effects of root exudates and biochar on the dissipation of polycyclic aromatic hydrocarbons (PAHs) and on the microbial community structures in soil. As a major component of the root exudates of ryegrass, oxalic acid (OA) significantly enhanced the dissipation of high- and low-ring PAHs in the studied soil with or without maize straw biochar amendment (p < 0.05). However, biochar alone enhanced only the dissipation of high-ring PAHs. The activities of three enzymes (urease, polyphenol oxidase and dehydrogenase) were the highest in soil amended with both maize straw biochar and 0.5 mg kg-1 of OA. Moreover, soil microbial biomass and the abundances of genera and genes associated with PAH degradation were significantly enhanced with the tandem application of biochar and OA (p < 0.05). These changes led to a synergetic effect of biochar and OA on the shifts in microbial community structures and on the dissipation of PAHs, especially for high-ring PAHs. The results in this study suggested that a combined biochar-rhizosphere approach should be a feasible remediation strategy for PAH-contaminated soil.
    [Abstract] [Full Text] [Related] [New Search]