These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Principles of Actomyosin Regulation In Vivo. Author: Agarwal P, Zaidel-Bar R. Journal: Trends Cell Biol; 2019 Feb; 29(2):150-163. PubMed ID: 30385150. Abstract: The actomyosin cytoskeleton is responsible for most force-driven processes in cells and tissues. How it assembles into the necessary structures at the right time and place is an important question. Here, we focus on molecular mechanisms of actomyosin regulation recently elucidated in animal models, and highlight several common principles that emerge. The architecture of the actomyosin network - an important determinant of its function - results from actin polymerization, crosslinking and turnover, localized myosin activation, and contractility-driven self-organization. Spatiotemporal regulation is achieved by tissue-specific expression and subcellular localization of Rho GTPase regulators. Subcellular anchor points of actomyosin structures control the outcome of their contraction, and molecular feedback mechanisms dictate whether they are transient, cyclic, or persistent.[Abstract] [Full Text] [Related] [New Search]