These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetic characterization of cytochrome c oxidase from Bacillus subtilis.
    Author: de Vrij W, Konings WN.
    Journal: Eur J Biochem; 1987 Aug 03; 166(3):581-7. PubMed ID: 3038545.
    Abstract:
    Bacillus subtilis aa3-type cytochrome c oxidase is capable of oxidizing cytochrome c from different origins. The kinetic properties of the enzyme are influenced by ionic strength. The affinity for Saccharomyces cerevisiae cytochrome c declines with increasing ionic strength whereas the Vmax remains almost constant. An increase of Vmax is observed when the enzyme is incorporated in artificial membranes. Negatively charged phospholipids allow high turnover rates of the aa3-type oxidase. The effect of ionic strength on oxidation of horse heart cytochrome c results in significant changes of both Km and Vmax. These effects can be explained by disturbances of enzyme-substrate interactions and are not related to changes in the aggregation state of the enzyme. The respiration control index of the enzyme reconstituted in artificial membranes appeared to be dependent on phospholipid composition, protein/lipid ratios and also on the external pH. The action of the ionophores nigericin and valinomycin, at various pH values, on the enzyme activity and proton-permeability measurements of the membranes indicate that both components of the proton-motive force, the membrane potential and the pH gradient, can in principle regulate enzyme activity in the reconstituted state.
    [Abstract] [Full Text] [Related] [New Search]