These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ferrous iron uptake by Bifidobacterium bifidum var. pennsylvanicus: the effect of metals and metabolic inhibitors. Author: Bezkorovainy A, Solberg L, Poch M, Miller-Catchpole R. Journal: Int J Biochem; 1987; 19(6):517-22. PubMed ID: 3038634. Abstract: Ferrous iron uptake studies in Bifidobacterium bifidum var. pennsylvanicus were carried out in a well-defined salt solution termed "modified Hanks solution" at both high iron concentrations (LAFIUS conditions) and low concentrations (HAFIUS conditions). Various divalent metals, Mn2+, Zn2+, Ni2+ and Cu2+, inhibited iron uptake under HAFIUS conditions in a non-competitive manner, and in a pseudo-competitive manner under LAFIUS conditions. Cr2+ had no effect. Co2+ inhibited iron uptake competitively under HAFIUS conditions. Metabolic affectors that inhibited iron uptake both under HAFIUS and LAFIUS conditions were: tetraphenylphosphonium chloride, diethylstilbesterol, vanadate, carbonylcyanide-m-chlorophenyl-hydrazone, and a mixture of valinomycin and nigericin. Substances that stimulated iron uptake were KCl, valinomycin, and nigericin. Iron uptake under LAFIUS conditions in piperazine-buffered modified Hanks solution was higher than that in the acetate-buffered solution, and acetate inhibited iron uptake in the piperazine buffer. HAFIUS showed no difference. It is concluded that iron uptake in bifidobacteria is driven by an ATPase-dependent proton-motive force and that both the pH gradient and membrane potential are involved in this process. Mn2+, Zn2+, Ni2+, and Cu2+ may be transported via LAFIUS, but not HAFIUS. HAFIUS may transport only Co2+ in addition to Fe2+.[Abstract] [Full Text] [Related] [New Search]